Numerical Integration

General 1-dimensional formula, f : R — R,
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where x; are nodes and w; are weights.

General 2-dimensional formula (product rule), f : R? — R,

E(f(x1,x2)) ZZW,WJ Xi, Xj)-

From now on: Assume bivariate normal distributed x's,
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Some Methods

Monte Carlo: Draw S values of {x1,x2} from N (1, Q) and let

w; = w; = 1/V/S to get
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Quadrature (Product rule): look up {X} and {w} from a table (more
accurate than calculating them!) and transform {X} into {xi,xo} using

N2 (1, 2) and apply (1)

Sparse Grids: (or “Smolyak’s method”) look up {¥} and {w} from
another table (for a given degree of accuracy) and transform {X} into

{x1, x2} using N2 (11, 2) and apply (1)
Monomial Methods: (or “Stroud’s method)some different ideas to
integrating normal random variables with very few points. See, e.g., Judd

(1998). | have found some from
http://people.sc.fsu.edu/~jburkardt/m src/stroud/stroud.html.



Quadrature and Sparse Grids (Heiss and Winschel, 2008)

Product rule:
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Fig. 1. Construction of the sparse grid in two dimensions.



Constructing nodes/draws

To construct nodes or draws (that all stem from standrad normal

distribution), we need to add the mean and multiply by the square root
. . 1

of the covariance matrix, Q2.

Unfortunately, the square root of matrix is not unique! Some are:

» Cholesky decomposition: Q = LL’ — Q2 = L, L is lower cholesky
factor,

» Eigenvalues: Q = VAV — Q2 = VAZ, V is a eigenvector and A is
a diagonal matrix of eigenvalues,

» Arbitrary rotation: Q = VAV — Q> = VRA?, Visa eigenvector,
R is a “rotation” and A is a diagonal matrix of eigenvalues,

Hence, multiple different methods result in surprisingly different “sampling
schemes”. Matlab example (MultiDimIntegration.m) inspired by
Jackel (2005) illustrate these methods for all four integration approaches.
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