
LEAST SQUARES AND
FLOATING POINT

PRECISION
NUMEDIG SEPTEMBER 2013

Created by Andreas Noack Jensen

http://www.econ.ku.dk/phdstudent/noack

THE LEAST SQUARES PROBLEM
Consider the problem

]y J Xbmin
b

]2

If has linearly independent columnsX
= (X yb̂ X ′)J1 X ′

so what is the problem?

or

or

or something else... What is the difference?

HOW IS CALCULATED?b̂
bhat=inv(X'*X)*(X'*y)

bhat=(X'*X)\(X'*y)

bhat=X\y

ONE STEP BACK!
Solve the normal equations, X = yX ′ b̂ X ′

Linear system of equations, Ax = b
Never invert a matrix

Well...

then and

SOLVING LINEAR EQUATIONS
First year math taught us to use row operations to reduce

problem to echelon form. MATLAB does essentially the same
thing:

The problem is transformed to triangular form and solved by
backward recursion

()() = ()a11

0
a12

a22

x1
x2

b1

b2

=x2 aJ1
22 b2 = (J)x1 aJ1

11 b1 a12x2

A = LU
 is factorised into a Lower (unit) triangular and an Upper

triangular matrix. Consider for . The

factorisation is

A
Ax = b A = ()a11

a21
a12
a22

() = ()()a11
a21

a12
a22

1
l21

0
1

u11

0
u12

u22

Now, which can be solved as the two triangular
systems and

LUx = b
Ly = b y = Ux

This is what \ does in MATLAB and Julia when is squareA

A = QR
 is factorized into a orthogonal matrix , i.e. and an

upper triangular matrix . Hence we can multiply

with from the left and solve

which is triangular.

A Q Q = IQ′

R
QRx = b

Q′

Rx = bQ′

If is positive definite then for some . If we
factorise then

with triangular. This is known as the Cholesky
decomposition/factorisation. Linear system

can be solved similarly to system by solving

and

CHOLESKY
A A = BB′ B

B = QR
A = QR = RR′Q′ R′

R

Rx = bR′

LU
y = bR′

y = Rx

THE INVERSE
How to calculate the inverse? Finding the inverse is the same

as solving

for or in matrix form

Hence, faster to solve directly instead of first solving
 to get and then multiplying

Ax = ei
i = 1,Q , n

AX = I.
Ax = b

AX = I AJ1 x = bAJ1

THE PRECISION OF THE INVERSE
Saying: Never calculate the inverse. It is slow and imprecise.

We have discussed the first part. What about the second?

The condition number measures how output error is affected
by input error. Smaller condition number is better. Depends

on the choice of norm, but most the induced two norm is used.

Well knwon error bound states that a solution calculated with
the inverse doubles the condition number relative to a

solution by backward recursion.

Druinsky and Toledo (2012) does not agree and not easy to
find substantial differences.

LEAST SQUARES
Consider again the normal equations

The matrix is positive definite so let us solve this by the
Cholesky!

X = y.X ′ b̂ X ′

XX ′

This is NOT what happens in MATLAB when writing (X'*X)\
(X'*y) bacause MATLAB does not know that is positive

definite.
XX ′

MATLAB uses the . No gain in calculating by Cholesky
because of temporary array.

LU

NUMERICAL CONSIDERATIONS
The condition number of is the square of the condition

number of . But can we avoid ?
XX ′

X XX ′

Yes, we can!.

The factorisation can be calculated for rectangular
matrices, i.e.

Notice that is rectangular, but still .

QR

X = QR = ()() = .Q0 Q1
R0

0
Q0R0

Q0 = IQ′
0 Q0

Then by the normal equations

or simply

which is a rectangular system. This is what solves in Julia
and MATLAB when is rectangular. A win/lose situation: No

squaring but has a large dimension which does not
have. Therefore the last matrix is much faster to factorise.

Doornik's point in the for .

 LEAST SQUARES CONTINUED...QR

= yR′
0R0 b̂ R′

0Q′
0

= yR0 b̂ Q′
0

\
X

X XX ′

documentation olsc

http://www.doornik.com/ox

CONCLUSION
Neat theoretical reasons to prefer \ over inv but not much

impact (for the statistician) in practice for two reasons:

1. is (often) small and therefore the inverse is very fast to
calculate

2. The numerical problems with squaring is negligible
compared to the statistical problems with almost singularity
of , i.e. huge standard errors.

XX ′

X

XX ′

We want for find such that . Iterate over

When calculating quantiles of a distribution with cdf and pdf
 this is

NEWTON ITERATION
x g(x) = a

= Jxn+1 xi
g() J axn

()g′ xn
F

f

= Jxn+1 xn
F() J axn

f ()xn

