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THE LEAST SQUARES PROBLEM
Consider the problem

]y J Xbmin
b

]2

If  has linearly independent columnsX
= ( X yb̂ X ′ )J1 X ′

so what is the problem?



or

or

or something else... What is the difference?

HOW IS  CALCULATED?b̂
bhat=inv(X'*X)*(X'*y)
      

bhat=(X'*X)\(X'*y)
      

bhat=X\y
      



ONE STEP BACK!
Solve the normal equations, X = yX ′ b̂ X ′

Linear system of equations, Ax = b
Never invert a matrix

Well...



then  and 

SOLVING LINEAR EQUATIONS
First year math taught us to use row operations to reduce

problem to echelon form. MATLAB does essentially the same
thing:

The problem is transformed to triangular form and solved by
backward recursion
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A = LU
 is factorised into a Lower (unit) triangular and an Upper

triangular matrix. Consider  for . The

factorisation is
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Now,  which can be solved as the two triangular
systems  and 

LUx = b
Ly = b y = Ux

This is what \ does in MATLAB and Julia when  is squareA



A = QR
 is factorized into a orthogonal matrix , i.e.  and an

upper triangular matrix . Hence we can multiply

with  from the left and solve

which is triangular.

A Q Q = IQ′

R
QRx = b

Q′

Rx = bQ′



If  is positive definite then  for some . If we
factorise  then

with  triangular. This is known as the Cholesky
decomposition/factorisation. Linear system

can be solved similarly to  system by solving

and

CHOLESKY
A A = BB′ B

B = QR
A = QR = RR′Q′ R′

R

Rx = bR′

LU
y = bR′

y = Rx



THE INVERSE
How to calculate the inverse? Finding the inverse is the same

as solving

for  or in matrix form

Hence, faster to solve  directly instead of first solving 
 to get  and then multiplying 

Ax = ei
i = 1,Q , n

AX = I.
Ax = b

AX = I AJ1 x = bAJ1



THE PRECISION OF THE INVERSE
Saying: Never calculate the inverse. It is slow and imprecise.

We have discussed the first part. What about the second?

The condition number measures how output error is affected
by input error. Smaller condition number is better. Depends

on the choice of norm, but most the induced two norm is used.

Well knwon error bound states that a solution calculated with
the inverse doubles the condition number relative to a

solution by backward recursion.

Druinsky and Toledo (2012) does not agree and not easy to
find substantial differences.



LEAST SQUARES
Consider again the normal equations

The matrix  is positive definite so let us solve this by the
Cholesky!

X = y.X ′ b̂ X ′

XX ′

This is NOT what happens in MATLAB when writing (X'*X)\
(X'*y) bacause MATLAB does not know that  is positive

definite.
XX ′

MATLAB uses the . No gain in calculating by Cholesky
because of temporary array.

LU



NUMERICAL CONSIDERATIONS
The condition number of  is the square of the condition

number of . But can we avoid ?
XX ′

X XX ′

Yes, we can!.

The  factorisation can be calculated for rectangular
matrices, i.e.

Notice that  is rectangular, but still .

QR

X = QR = ( )( ) = .Q0 Q1
R0

0
Q0R0

Q0 = IQ′
0 Q0



Then by the normal equations

or simply

which is a rectangular system. This is what  solves in Julia
and MATLAB when  is rectangular. A win/lose situation: No

squaring but  has a large dimension which  does not
have. Therefore the last matrix is much faster to factorise.

Doornik's point in the  for .

 LEAST SQUARES CONTINUED...QR

= yR′
0R0 b̂ R′

0Q′
0

= yR0 b̂ Q′
0

\
X

X XX ′

documentation olsc

http://www.doornik.com/ox


CONCLUSION
Neat theoretical reasons to prefer \ over inv but not much

impact (for the statistician) in practice for two reasons:

1.  is (often) small and therefore the inverse is very fast to
calculate

2. The numerical problems with squaring  is negligible
compared to the statistical problems with almost singularity
of , i.e. huge standard errors.
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X

XX ′



We want for find  such that . Iterate over

When calculating quantiles of a distribution with cdf  and pdf
 this is

NEWTON ITERATION
x g(x) = a

= Jxn+1 xi
g( ) J axn

( )g′ xn
F

f

= Jxn+1 xn
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f ( )xn


